===== Usage ===== Connect to the API and upload a dataset:: from modep_client.client import Client from modep_client.datasets import Datasets client = Client(os.environ['MODEP_API_KEY']) datasets = Datasets(client) df_train = pd.read_csv('https://jgoode.s3.amazonaws.com/titanic/train.csv') df_test = pd.read_csv('https://jgoode.s3.amazonaws.com/titanic/test.csv') train_dset = datasets.upload(df_train, 'titanic_train') test_dset = datasets.upload(df_test, 'titanic_test') Train all tabular models on the dataset for a max of 30 minutes each:: from modep_client.automl import FrameworkFlights flights = FrameworkFlights(client) frameworks = [ 'AutoGluon', 'AutoGluon_bestquality', 'autosklearn', 'autosklearn2', 'AutoWEKA', 'constantpredictor', 'DecisionTree', 'flaml', 'GAMA', 'H2OAutoML', 'hyperoptsklearn', 'mljarsupervised', 'mljarsupervised_compete', 'MLNet', 'RandomForest', 'TPOT', 'TunedRandomForest', ] # starts the training flight_job = flights.train(frameworks, train_dset['id'], test_dset['id'], 'survived', 60*30) # waits for training to complete flight = flight_job.result()