modep_client package¶
Submodules¶
modep_client.automl module¶
-
class
modep_client.automl.
FrameworkFlights
(client: modep_client.client.Client)[source]¶ Bases:
object
Initialize the FrameworkFlights class. A Flight is a set of AutoML frameworks trained on the same data for comparison purposes.
Parameters: client – A modep_client.client.Client
object-
train
(framework_names: List[str], train_ids: Union[str, List[str]], test_ids: Union[str, List[str]], target: str, max_runtime_seconds: int)[source]¶ Start a job to train an AutoML framework flight.
Parameters: - framework_names (str or list of str) – A list of framework names to train. If empty, then all
frameworks are trained. Use
modep_client.frameworks.Frameworks.info()
to get a list of available frameworks. Available ones are AutoGluon, AutoGluon_bestquality, autosklearn, autosklearn2, AutoWEKA, constantpredictor, DecisionTree, flaml, GAMA, H2OAutoML, hyperoptsklearn, mljarsupervised, mljarsupervised_compete, MLNet, RandomForest, TPOT, TunedRandomForest. - train_ids (list) – The ids of the dataset(s) to train on
- test_ids (list) – The ids of the dataset(s) to test on
- target (str) – The name of the target column
- max_runtime_seconds (int) – The maximum amount of time in seconds to train per dataset(s)
Returns: A
modep_client.tasks.BaseTask
object- framework_names (str or list of str) – A list of framework names to train. If empty, then all
frameworks are trained. Use
-
wait
(id)[source]¶ Wait for a flight to finish while printing out a DataFrame of the results. This version is for running in a Jupyter notebook, for the terminal version, see
wait_terminal()
.Parameters: id (str) – The id of the flight to wait for
-
-
class
modep_client.automl.
Frameworks
(client: modep_client.client.Client)[source]¶ Bases:
object
Initialize the Framworks class
Parameters: client – A modep_client.client.Client
object-
delete
(id)[source]¶ Delete an AutoML training run
Parameters: id (str) – The id of the training run to delete Returns: A dictionary containing info about the deletion
-
get
(id: str)[source]¶ Get an AutoML training run by id
Parameters: id (str) – The id of the training run Returns: A dictionary containing the training run
-
get_output
(framework_id, target_dir=None)[source]¶ Get the output files generated by the AutoML training run.
Parameters: - framework_id (str) – The id of the training run
- target_dir (str) – The local directory to download the files to. If None, the files are downloaded to a temp directory.
-
get_predictions
(predictions_id)[source]¶ Get the predictions created by an AutoML training or prediction job
Parameters: predictions_id (str) – The id of the predictions to get Returns: A dictionary containing the predictions
-
info
()[source]¶ Get info about the AutoML frameworks available through the API
Returns: A pandas.DataFrame
with one row for each framework
-
list
()[source]¶ List all AutoML framework training runs
Returns: A pandas.DataFrame
with one row for each training run
-
predict
(framework_id, dataset_id)[source]¶ Start a job to get predictions from an AutoML framework on a new dataset
Parameters: - framework_id (str) – The id of the framework to use
- dataset_id (str) – The id of the dataset to predict on
Returns: A
modep_client.tasks.BaseTask
object
-
print_log
(framework_id, target_dir=None)[source]¶ Print the logs generated by the AutoML training run.
Parameters: - framework_id (str) – The id of the training run
- target_dir (str) – The local directory to download the files to. If None, the files are downloaded to a temp directory.
-
stop
(id)[source]¶ Stop an AutoML training run
Parameters: id (str) – The id of the training run to stop Returns: A dictionary containing the training run
-
train
(framework_name: str, train_ids: Union[str, List[str]], test_ids: Union[str, List[str]], target: str, max_runtime_seconds: int)[source]¶ Train an AutoML framework
Parameters: - framework_name (str) – The name of the framework (ie. AutoGluon, AutoGluon_bestquality, autosklearn, autosklearn2, AutoWEKA, constantpredictor, DecisionTree, flaml, GAMA, H2OAutoML, hyperoptsklearn, mljarsupervised, mljarsupervised_compete, MLNet, RandomForest, TPOT, TunedRandomForest)
- train_ids – The id(s) of dataset(s) to train on (ie. e1bc3d16b-6d67-43cd-af59-8d39d8cb2a02)
- test_ids – The id(s) of dataset(s) to test on (ie. 1bc3d16b-6d67-43cd-af59-8d39d8cb2a02)
- target (str) – The name of the target column in the training dataset(s)
- max_runtime_seconds (int) – The maximum amount of time in seconds to train per dataset(s)
Returns: A
modep_client.tasks.BaseTask
object
-
modep_client.client module¶
-
class
modep_client.client.
Client
(api_key, url='https://modep.ai/v1/', ensure_https=True)[source]¶ Bases:
object
Initialize a ModepClient object.
Parameters: - api_key (str) – Your API key from the modep.ai account page (https://modep.ai/account)
- url (str) – The base URL of the modep.ai API
- ensure_https (bool) – If True, will ensure that the URL starts with https
modep_client.datasets module¶
-
class
modep_client.datasets.
Datasets
(client: modep_client.client.Client)[source]¶ Bases:
object
Initialize the Datasets class
Parameters: client – A modep_client.client.Client
object-
delete
(dataset_id)[source]¶ Delete a dataset by id.
Parameters: id (str) – The id of the dataset Returns: A dictionary containing information on the deletion
-
get
(id: str)[source]¶ Get a dataset by id.
Parameters: id (str) – The id of the dataset Returns: A dictionary for the dataset
-
list
()[source]¶ List all datasets.
Returns: A list of dictionaries for each uploaded or public dataset
-
upload
(dset: Union[str, pandas.core.frame.DataFrame], name: str, target: str = None, categorical_target: bool = True)[source]¶ Upload a tabular dataset.
Parameters: - dset (str or
pandas.DataFrame
) – either a path to a CSV file or DataFrame containing the data - name (str) – A name to give the dataset (ie. titanic-train or titanic-test)
- target (str or None) – Optionally specify a target column for the dataset
- categorical_target (bool) – True if the specified target column is categorical (for classification), otherwise set this to False for regression.
- dset (str or
-
modep_client.tasks module¶
-
class
modep_client.tasks.
BaseTask
(response, get_method)[source]¶ Bases:
object
Initialize a task object, which monitors the status of a task.
Parameters: - response (dict) – The initial response from the server
- get_method (function) – The method to use to get the task status
Returns: the final response from the server once the task is complete
Module contents¶
Top-level package for modep-client.